Biosynthesis of 2-methylisoborneol is regulated by chromatic acclimation of *Pseudanabaena*

Ming Su^{a,b,g,*}, Jiao Fang^{a,h}, Zeyu Jia^{a,c}, Yuliang Su^d, Yiping Zhu^e, Bin Wu^d, John C. Little^f, Jianwei Yu^{a,b,g}, Min Yang^{a,b,g}

^a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085,

^bNational Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085,

^cYangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038,

^dZhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020,

^eShanghai Chengtou Raw Water Co. Ltd., Beiai Rd. 1540, Shanghai, 200125,

^fDepartment of Civil and Environmental Engineering, Virginia Tech., Blacksburg, VA, 24061-0246,

^g University of Chinese Academy of Sciences, Beijing, 100049,

^hSchool of Civil Engineering, Chang'an University, Xi'an, 710054,

Highlights

- Biosynthesisis of 2-methylisoborneol (MIB) is regulated by chromatic acclimation
- MIB is correlated with chlorophyll a abundance regardless with light color
- Green light promote MIB synthesis of phycoerythrin-containing Pseudanabaena

References

^{*}Corresponding author

Email addresses: mingsu@rcees.ac.cn (Ming Su), jia_zeyu@ctg.com.cn (Zeyu Jia), jwyu@rcees.ac.cn (Jianwei Yu), yangmin@rcees.ac.cn (Min Yang)