MIB-derived odor management based upon hydraulic regulation in small drinking water reservoirs: principle and application

Jinping $Lu^{a,d}$, Ming $Su^{a,d,*}$, Yuliang Su^b , Jiao Fang^a, Michael Burch^c, Tengxin Cao^{a,d}, Bin Wu^b , Jianwei Yu^{a,d}, Min Yang^{a,d,*}

^a State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085,

^bZhuhai Water Environment Holdings Group Ltd., Zhuhai, 519020,

^cSchool of Biological Sciences, The University of Adelaide, SA, 5005,

^d University of Chinese Academy of Sciences, Beijing, 100049,

Highlights

- Hydraulic retention time (HRT) increase can trigger 2-methylisoborneol (MIB) episodes
- MIB-producing Planktothricoides can be restricted by reducing HRT to <10 days
- Critical HRTs were evaluated for 14 cyanobacterial genera based on a theoretical model
- HRT regulation was successfully applied for MIB control in ZXD Reservoir

^{*}Corresponding author