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1. Test in laboratory simulators
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Fig. S1 The figure illustrated the protocol of Sediment Resuspension in laboratory simulators. As shown above, SR
operation was periodically conducted in LEs for two minutes (then settled for the following 118 mins) every 2 hours
from 7:00 to 19:00 during the first day (Stage SR‐ON). No SR operation was performed for all three simulators from day
11 to day 40 (Stage SR‐OFF). Besides, the unique light source was switched on from 7:00 to 19:00 during six SR cycles
to provide light for the growth of algae. Water and sediments samples were collected before the first SR cycle began.
The sampling frequency was every day during Stage SR‐ON and one every 2 days during Stage SR‐OFF (no samples were
collected during day 21–30 due to COVID 19 constraints).
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2. Field applications

2.1. Field applications in five drinking water reservoirs

NJ Reservoir (short-term SR)

SXK Reservoir (long-term SR)

CX Reservoir (short-term SR) HM Reservoir (short-term SR)

SMH Reservoir (long-term SR)

BA

C D E

Fig. S2 The figure displayed the field applications of SR operations in five drinking water reservoirs: SMH Reservoir (A),
SXK Reservoir (B), NJ Reservoir (C), CX Reservoir (D) and HM Reservoir (E)
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2.2. Equipment operational parameters, basic feature and sampling of five reservoirs

Reservoir SMH SXK NJ CX HM

Depth (m) 10.5 28.7 7.8 4 6.4
Work area (ha) 25 18 26.5 3.8 12
Risk area (ha) 12 6.4 14.3 1.3 4.12
Numbers of boats 1 1 2 3 3
Work time (d) 180~210 180~210 14 11 10
Work hour (h/d) 10 10 10 10 10
Frequency (1/d) 0.625 1.172 1.049 17.31 5.461
Investigation time Apr.~Oct., 2023 Apr.~Oct., 2023 Sep., 2021 Jul., 2022 Oct., 2023
Dominant genus Achnanthes;

Microcystis
Pseudanabaena;
Raphidiopsis

Microcystis;
Synedra

Microcystis Raphidiopsis

Sampling frequency biweekly biweekly daily daily daily
Sampling depth (m) 0.5;3.0;6.0 0.5;3.0;6.0 0.5;3.0;6.0 0.5;2.0;4.0 0.5;3.0;6.0
Collect sediment? yes yes no no no

Table S1 Equipment operational parameters, basic characteristics of algal blooms, and sampling protocols in five drinking
water reservoirs.
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3. The changes in turbidity and extinction coefficient during a single SR operation

Fig. S3 The changes in turbidity over time during a single SR operation (repeated three times, n = 3) in the field test of
SXK Reservoir (A); The changes in extinction coefficient over time in SR cycles (n = 60) during LEs tests (B). Each data
point represents the mean value of the respective measurements.
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4. Evaluation of nitrogen changes for SR operation in laboratory simulators

Fig. S4 The dynamics of nitrogen concentration (B) in laboratory simulators, comprising two simulators with Sediment
Resuspension (SR) operations (designated as LE1 and LE2), and one simulator without SR serving as an untreated control
(LC).
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5. The difference in dissolved nitrogen and dissolved organic carbon during SR operation

Fig. S5 Comparison of total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) between SR‐operated samples
(LC, FC) and untreated samples (LEs, FE) in laboratory simulators and field applications. Panel A illustrates the difference
in TDN between SR‐operated samples and untreated samples within laboratory simulators (p‐value = 0.0116), three
short‐term SR‐operated reservoirs (CX, NJ and HM Reservoirs, p‐value = 0.4445), and two long‐term SR‐operated reser‐
voirs (SMH and SXK Reservoirs, p‐value = 0.8324). Panel B illustrates the difference in DOC between SR‐operated samples
and untreated samples within laboratory simulators (p‐value = 0.6713) and three short‐term SR‐operated reservoirs (p‐
value = 0.1104).
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6. Improvement of sediment quality in laboratory simulators

No interfacial oxide between water and sediment

BA

Interfacial oxide
Water

Sediment

Water
Sediment

Interfacial oxide between water and sediment

Fig. S6 Interfacial oxide layer was formed between the sediment and the water phase in laboratory simulators with 10
days’ SR operation (LE, B) in comparison with untreated control set (LC, A).
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7. Evaluation of algae control effect and phosphorus changes during SR OFF in laboratory sim‐

ulators

Fig. S7 The dynamics of Microcystis cell density in LEs (LE1 & LE2) during Stage SR‐ON (days 1–10) and Stage SR‐OFF
(days 11–20) are depicted. Microcystis cell density decreased during Stage SR‐ON but subsequently increased during
Stage SR‐OFF, providing additional evidence of the impact of SR on algae control.
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Fig. S8 The dynamics of dissolved phosphorus concentration in LC and LEs over the first 20 days are illustrated. Dissolved
phosphorus decreased to extremely low levels during SR in both LC and LEs. However, in LC, dissolved phosphorus began
to rise significantly between days 11 and 20, with an increase rate of 4.29 μg L‐1 d‐1 (R2 = 0.92, p‐value = 0.0027). In
contrast, increasing rate of LEs was much lower (1.55 μg L‐1 d‐1, R2 = 0.53, p‐value = 0.007).
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8. Algal control effect of SR in drinking water reservoirs
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Fig. S9 Changes in total algal density over time in FC (without SR operation) and FE (with SR operation) of SMH Reservoir.
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Fig. S10 Changes in total algal density over time in FC (without SR operation) and FE (with SR operation) of SXK Reservoir.
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Fig. S11 Changes in different phylum density over time in CX Reservoir. Specifically, severeMicrocystis bloom occurred
in CX reservoir in October of 2021 and one boat was used to resuspend sediment for emergency algae control. Dynamics
of cell density for different phylum in the Reservoir during 10 days SR operation were shown here. Significant decline in
cell density especially density of Cyanobacteria occurred after the fourth day of SR operation.
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Fig. S12 The changes in total algal density over time in FC (without SR operation) and FE (with SR operation) of CX
Reservoir. During day ‐6 to day 0, severe cyanobacteria bloom was found in the whole reservoir including FE and FC.
During day 1–11, two boats were employed for CX reservoir and conducted SR operation in FE. Decrease rate of 2.043 ×
108 cells L‐1 d‐1 in cell density was found in FE, while density remained rising in FC. After day 11, the algae control effect
had been confirmed, and the number of boat decreased to one to maintain effectiveness. The following are additional
explanations: (1) Comparison of cell densities between SR‐operated site (FE) and untreated site (FC) during day 1–11 is
shown in Fig. 4B; (2) several images illustrating the changes in water surface from day 0 to day 10 is shown in Fig. 4D.
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Fig. S13 Comparison of cell density between FC and FE in NJ Reservoir. Here, 𝐶0 represented original cell density of
FC and FE, and 𝐶 represented cell density during SR operation in FE and FC. The dotted line in this figure represented
𝐶/𝐶0 = 1. In more detail, 𝐶0 represented original cell density of FC and FE, and 𝐶 represented cell density during
SR operation in FE and FC. Therefore, 𝐶/𝐶0 > 1 denoted increase in cell density during our investigation, while
𝐶/𝐶0 < 1 denoted decrease in cell density. Data points of 42 were used for FC and FE in each figure.
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Fig. S14 The changes in total algal density over time in FC (without SR operation) and FE (with SR operation) of HM
Reservoir. As shown in the figure, algal density decreased during Stage SR‐ON (day 1–11) and stayed in a relatively low
level during Stage SR‐OFF (day 12–55) in FE. While in FC, algal density increased and stabled at a higher level during the
whole investigation in FC. Additionally, comparison of cell densities between FE and FC during day 12–55 is shown in Fig.
4B.
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9. Summary of algal growth rates under various light conditions

Fig. S15 The effect of light intensity on the growth of cyanobacteria. Data are collected from references: Cylindros‐
permopsis (Briand et al., 2004; Xiao et al., 2017; Bonilla et al., 2012; Xiao et al., 2020; Willis et al., 2016), Microcystis
(Marinho et al., 2013; Li et al., 2014; Salvador et al., 2016; Xiao et al., 2017; Torres et al., 2016; Hesse et al., 2001; Xiao
et al., 2020; Thomas and Litchman, 2015; Bañares‐España et al., 2012; e. Mello et al., 2012; Briand et al., 2012; Wiedner
et al., 2003; Sugimoto et al., 2015; Lürling et al., 2013; Wu et al., 2011), Pseudanabaena (Zhang et al., 2016; Cao et al.,
2023), Limnothrix (Nicklisch, 1998; Tiwari et al., 2001; Nicklisch, 1999; Shatwell et al., 2012; Daniels, 2016), Planktothrix
(Jia et al., 2019; Torres et al., 2016; Nicklisch, 1998), Planktothricoides (Lu et al., 2022; Mohanty et al., 2022), Oscillatoria
(Foy, 1983; Van Der Ploeg et al., 1995; Tiwari et al., 2001; Cai et al., 2017; Tang et al., 1997) and Synechocystis (Luimstra
et al., 2018).
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10. The changes in Chlorophyll a during a single operation in field tests

Fig. S16 The changes in Chlorophyll a over time during a single SR operation (repeated three times, n = 3) in the field
test of SXK Reservoir (A)
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11. Investigation of dissolved iron and manganese during SR operations in five Reservoirs

Fig. S17 Comparison of dissolved iron between FC and FE in two reservoirs with long‐term SR operation (A) and NJ
reservoirs with short‐term SR operation (B).
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Fig. S18 Comparison of dissolved manganese between FC and FE in two reservoirs with long‐term SR operation (A) and
NJ reservoirs with short‐term SR operation (B).
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