Update relational-data.Rmd

typos
This commit is contained in:
Radu Grosu 2016-01-30 13:13:46 +00:00
parent 8101753650
commit ae06075c35
1 changed files with 87 additions and 87 deletions

View File

@ -18,7 +18,7 @@ It's rare that a data analysis involves only a single table of data. Typically y
Relations are always defined between a pair of tables. All other relations are built up from this simple idea: the relations of three or more tables are always a property of the relations between each pair; sometimes both elements of a pair can be the same table.
To work with relational data you need verbs that work with pairs of tables. There are three families of verbs design to work with relational data:
To work with relational data you need verbs that work with pairs of tables. There are three families of verbs designed to work with relational data:
* __Mutating joins__, which add new variables to one data frame from matching
rows in another.
@ -28,11 +28,11 @@ To work with relational data you need verbs that work with pairs of tables. Ther
* __Set operations__, which treat observations like they were set elements.
The most common place to find relational data is in a _relational_ database management system, a term that encompasses almost all modern databases. If you've used a database before, you've almost certainly used SQL. If so, you should find the concepts in this chapter familiar, although their expression in dplyr is little different. Generally, dplyr is a little easier to use than SQL because it's specialised to data analysis: it makes common data analysis operations easier, at the expense of making it difficult to do other things.
The most common place to find relational data is in a _relational_ database management system, a term that encompasses almost all modern databases. If you've used a database before, you've almost certainly used SQL. If so, you should find the concepts in this chapter familiar, although their expression in dplyr is a little different. Generally, dplyr is a little easier to use than SQL because it's specialised to data analysis: it makes common data analysis operations easier, at the expense of making it difficult to do other things.
## nycflights13 {#nycflights13-relational}
You'll learn about relational data with other datasets from the nycflights13 package. As well as the `flights` table that you've worked with so far, nycflights13 contains a four related data frames:
You'll learn about relational data with other datasets from the nycflights13 package. As well as the `flights` table that you've worked with so far, nycflights13 contains four other related data frames:
* `airlines` lets you look up the full carrier name from its abbreviated
code:
@ -112,7 +112,7 @@ There are two types of keys:
each plane.
* A __foreign key__ uniquely identifies an observation in another table.
For example, the `flights$tailnum` is a foregin key because it matches each
For example, the `flights$tailnum` is a foreign key because it matches each
flight to a unique plane.
A variable can be both part of primary key _and_ a foreign key. For example, `origin` is part of the `weather` primary key, and is also a foreign key for the `airport` table.
@ -124,16 +124,16 @@ planes %>% count(tailnum) %>% filter(n > 1)
weather %>% count(year, month, day, hour, origin) %>% filter(n > 1)
```
Sometimes a table does't have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it. For example, what's the primary key in the `flights` table? You might think it would be the date plus the flight or tail number, but neither of those are unique:
Sometimes a table doesn't have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it. For example, what's the primary key in the `flights` table? You might think it would be the date plus the flight or tail number, but neither of those are unique:
```{r}
flights %>% count(year, month, day, flight) %>% filter(n > 1)
flights %>% count(year, month, day, tailnum) %>% filter(n > 1)
```
When starting to work with this data, I had naively assumed that each flight number would be only used once per day: that would make it much easiser to communicate problems with a specific flight. Unfortunately that is not the case! If a table lacks a primary key, it's sometimes useful to add one with `row_number()`. That makes it easier to match observations if you've done some filtering and want to check back in with the original data. This is called a surrogate key.
When starting to work with this data, I had naively assumed that each flight number would be only used once per day: that would make it much easier to communicate problems with a specific flight. Unfortunately that is not the case! If a table lacks a primary key, it's sometimes useful to add one with `row_number()`. That makes it easier to match observations if you've done some filtering and want to check back in with the original data. This is called a surrogate key.
A primary key and the corresponding foreign key in another table form a __relation__. Relations are typically one-to-many. For example, each flight has one plane, but each plane has many flights. In other data, you'll occassionaly see a 1-to-1 relationship. You can think of this as a special case of 1-to-many. It's possible to model many-to-many relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data there's a many-to-many relationship between airlines and airports: each airport flies to many airlines; each airport hosts many airlines.
A primary key and the corresponding foreign key in another table form a __relation__. Relations are typically one-to-many. For example, each flight has one plane, but each plane has many flights. In other data, you'll occasionally see a 1-to-1 relationship. You can think of this as a special case of 1-to-many. It's possible to model many-to-many relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data there's a many-to-many relationship between airlines and airports: each airport flies to many airlines; each airport hosts many airlines.
### Exercises
@ -243,7 +243,7 @@ Graphically, that looks like:
knitr::include_graphics("diagrams/join-outer.png")
```
The most commonly used join is the left join: you use this when ever you lookup additional data out of another table, becasuse it preserves the original observations even when there isn't a match. The left join should be your default join: use it unless you have a strong reason to prefer one of the others.
The most commonly used join is the left join: you use this whenever you lookup additional data out of another table, because it preserves the original observations even when there isn't a match. The left join should be your default join: use it unless you have a strong reason to prefer one of the others.
Another way to depict the different types of joins is with a Venn diagram:
@ -352,7 +352,7 @@ So far, the pairs of tables have always been joined by a single variable, and th
1. What weather conditions make it more likely to see a delay?
1. What happened on June 13 2013? Display the spatial pattern of delays,
and then use google to cross-reference with the weather.
and then use Google to cross-reference with the weather.
```{r, eval = FALSE, include = FALSE}
worst <- filter(not_cancelled, month == 6, day == 13)
@ -385,17 +385,17 @@ SQL is the inspiration for dplyr's conventions, so the translation is straightfo
dplyr | SQL
-----------------------------|-------------------------------------------
`inner_join(x, y, by = "z")` | `SELECT * FROM x INNER JOIN y USING (z)`
`left_join(x, y, by = "z")` | `SELECT * FROM x LEFT OUTER JOIN USING (z)`
`right_join(x, y, by = "z")` | `SELECT * FROM x RIGHT OUTER JOIN USING (z)`
`full_join(x, y, by = "z")` | `SELECT * FROM x FULL OUTER JOIN USING (z)`
`left_join(x, y, by = "z")` | `SELECT * FROM x LEFT OUTER JOIN y USING (z)`
`right_join(x, y, by = "z")` | `SELECT * FROM x RIGHT OUTER JOIN y USING (z)`
`full_join(x, y, by = "z")` | `SELECT * FROM x FULL OUTER JOIN y USING (z)`
Note that "INNER" and "OUTER" are optional, and often ommitted.
Note that "INNER" and "OUTER" are optional, and often omitted.
Joining different variables between the tables, e.g. `inner_join(x, y, by = c("a" = "b"))` uses a slightly different syntax in SQL: `SELECT * FROM x INNER JOIN y ON x.a = y.b`. As this syntax suggests SQL supports a wide range of join types than dplyr because you can connect the tables using constraints other than equiality (sometimes called non-equijoins).
Joining different variables between the tables, e.g. `inner_join(x, y, by = c("a" = "b"))` uses a slightly different syntax in SQL: `SELECT * FROM x INNER JOIN y ON x.a = y.b`. As this syntax suggests SQL supports a wide range of join types than dplyr because you can connect the tables using constraints other than equality (sometimes called non-equijoins).
## Filtering joins {#filtering-joins}
Filtering joins match obserations in the same way as mutating joins, but affect the observations, not the variables. There are two types:
Filtering joins match observations in the same way as mutating joins, but affect the observations, not the variables. There are two types:
* `semi_join(x, y)` __keeps__ all observations in `x` that have a match in `y`.
* `anti_join(x, y)` __drops__ all observations in `x` that have a match in `y`.
@ -494,7 +494,7 @@ Be aware that simply checking the number of rows before and after the join is no
## Set operations {#set-operations}
The final type of two-table verb is set operations. Generally, I use these the least frequently, but they are occassionally useful when you want to break a single complex filter into simpler pieces that you then combine.
The final type of two-table verb is set operations. Generally, I use these the least frequently, but they are occasionally useful when you want to break a single complex filter into simpler pieces that you then combine.
All these operations work with a complete row, comparing the values of every variable. These expect the `x` and `y` inputs to have the same variables, and treat the observations like sets: