Separate regexps into own chapter

This commit is contained in:
Hadley Wickham 2021-04-21 08:43:19 -05:00
parent 5f45c33adb
commit 18253a1d52
3 changed files with 414 additions and 450 deletions

View File

@ -25,6 +25,7 @@ rmd_files: [
"vector-tools.Rmd",
"missing-values.Rmd",
"strings.Rmd",
"regexps.Rmd",
"factors.Rmd",
"datetimes.Rmd",
"column-wise.Rmd",

382
regexps.Rmd Normal file
View File

@ -0,0 +1,382 @@
# Regular expressions
## Matching patterns with regular expressions
Regexps are a very terse language that allow you to describe patterns in strings.
They take a little while to get your head around, but once you understand them, you'll find them extremely useful.
To learn regular expressions, we'll use `str_view()` and `str_view_all()`.
These functions take a character vector and a regular expression, and show you how they match.
We'll start with very simple regular expressions and then gradually get more and more complicated.
Once you've mastered pattern matching, you'll learn how to apply those ideas with various stringr functions.
### Prerequisites
This chapter will focus on the **stringr** package for string manipulation, which is part of the core tidyverse.
```{r setup, message = FALSE}
library(tidyverse)
```
## Basic matches
The simplest patterns match exact strings:
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "an")
```
The next step up in complexity is `.`, which matches any character (except a newline):
```{r}
str_view(x, ".a.")
```
But if "`.`" matches any character, how do you match the character "`.`"?
You need to use an "escape" to tell the regular expression you want to match it exactly, not use its special behaviour.
Like strings, regexps use the backslash, `\`, to escape special behaviour.
So to match an `.`, you need the regexp `\.`.
Unfortunately this creates a problem.
We use strings to represent regular expressions, and `\` is also used as an escape symbol in strings.
So to create the regular expression `\.` we need the string `"\\."`.
```{r}
# To create the regular expression, we need \\
dot <- "\\."
# But the expression itself only contains one:
writeLines(dot)
# And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")
```
If `\` is used as an escape character in regular expressions, how do you match a literal `\`?
Well you need to escape it, creating the regular expression `\\`.
To create that regular expression, you need to use a string, which also needs to escape `\`.
That means to match a literal `\` you need to write `"\\\\"` --- you need four backslashes to match one!
```{r}
x <- "a\\b"
writeLines(x)
str_view(x, "\\\\")
```
In this book, I'll write regular expression as `\.` and strings that represent the regular expression as `"\\."`.
### Exercises
1. Explain why each of these strings don't match a `\`: `"\"`, `"\\"`, `"\\\"`.
2. How would you match the sequence `"'\`?
3. What patterns will the regular expression `\..\..\..` match?
How would you represent it as a string?
## Anchors
By default, regular expressions will match any part of a string.
It's often useful to *anchor* the regular expression so that it matches from the start or end of the string.
You can use:
- `^` to match the start of the string.
- `$` to match the end of the string.
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "^a")
str_view(x, "a$")
```
To remember which is which, try this mnemonic which I learned from [Evan Misshula](https://twitter.com/emisshula/status/323863393167613953): if you begin with power (`^`), you end up with money (`$`).
To force a regular expression to only match a complete string, anchor it with both `^` and `$`:
```{r}
x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple")
str_view(x, "^apple$")
```
You can also match the boundary between words with `\b`.
I don't often use this in R, but I will sometimes use it when I'm doing a search in RStudio when I want to find the name of a function that's a component of other functions.
For example, I'll search for `\bsum\b` to avoid matching `summarise`, `summary`, `rowsum` and so on.
### Exercises
1. How would you match the literal string `"$^$"`?
2. Given the corpus of common words in `stringr::words`, create regular expressions that find all words that:
a. Start with "y".
b. End with "x"
c. Are exactly three letters long. (Don't cheat by using `str_length()`!)
d. Have seven letters or more.
Since this list is long, you might want to use the `match` argument to `str_view()` to show only the matching or non-matching words.
## Character classes and alternatives
There are a number of special patterns that match more than one character.
You've already seen `.`, which matches any character apart from a newline.
There are four other useful tools:
- `\d`: matches any digit.
- `\s`: matches any whitespace (e.g. space, tab, newline).
- `[abc]`: matches a, b, or c.
- `[^abc]`: matches anything except a, b, or c.
Remember, to create a regular expression containing `\d` or `\s`, you'll need to escape the `\` for the string, so you'll type `"\\d"` or `"\\s"`.
A character class containing a single character is a nice alternative to backslash escapes when you want to include a single metacharacter in a regex.
Many people find this more readable.
```{r}
# Look for a literal character that normally has special meaning in a regex
str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")
str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")
str_view(c("abc", "a.c", "a*c", "a c"), "a[ ]")
```
This works for most (but not all) regex metacharacters: `$` `.` `|` `?` `*` `+` `(` `)` `[` `{`.
Unfortunately, a few characters have special meaning even inside a character class and must be handled with backslash escapes: `]` `\` `^` and `-`.
You can use *alternation* to pick between one or more alternative patterns.
For example, `abc|d..f` will match either '"abc"', or `"deaf"`.
Note that the precedence for `|` is low, so that `abc|xyz` matches `abc` or `xyz` not `abcyz` or `abxyz`.
Like with mathematical expressions, if precedence ever gets confusing, use parentheses to make it clear what you want:
```{r}
str_view(c("grey", "gray"), "gr(e|a)y")
```
### Exercises
1. Create regular expressions to find all words that:
a. Start with a vowel.
b. That only contain consonants. (Hint: thinking about matching "not"-vowels.)
c. End with `ed`, but not with `eed`.
d. End with `ing` or `ise`.
2. Empirically verify the rule "i before e except after c".
3. Is "q" always followed by a "u"?
4. Write a regular expression that matches a word if it's probably written in British English, not American English.
5. Create a regular expression that will match telephone numbers as commonly written in your country.
## Repetition / Quantifiers
The next step up in power involves controlling how many times a pattern matches:
- `?`: 0 or 1
- `+`: 1 or more
- `*`: 0 or more
```{r}
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")
str_view(x, "CC+")
str_view(x, 'C[LX]+')
```
Note that the precedence of these operators is high, so you can write: `colou?r` to match either American or British spellings.
That means most uses will need parentheses, like `bana(na)+`.
You can also specify the number of matches precisely:
- `{n}`: exactly n
- `{n,}`: n or more
- `{1,m}`: at most m
- `{n,m}`: between n and m
```{r}
str_view(x, "C{2}")
str_view(x, "C{2,}")
str_view(x, "C{1,3}")
str_view(x, "C{2,3}")
```
By default these matches are "greedy": they will match the longest string possible.
You can make them "lazy", matching the shortest string possible by putting a `?` after them.
This is an advanced feature of regular expressions, but it's useful to know that it exists:
```{r}
str_view(x, 'C{2,3}?')
str_view(x, 'C[LX]+?')
```
Collectively, these operators are called **quantifiers** because they quantify how many times a match can occur.
### Exercises
1. Describe the equivalents of `?`, `+`, `*` in `{m,n}` form.
2. Describe in words what these regular expressions match: (read carefully to see if I'm using a regular expression or a string that defines a regular expression.)
a. `^.*$`
b. `"\\{.+\\}"`
c. `\d{4}-\d{2}-\d{2}`
d. `"\\\\{4}"`
3. Create regular expressions to find all words that:
a. Start with three consonants.
b. Have three or more vowels in a row.
c. Have two or more vowel-consonant pairs in a row.
4. Solve the beginner regexp crosswords at [<https://regexcrossword.com/challenges/beginner>](https://regexcrossword.com/challenges/beginner){.uri}.
## Grouping and backreferences
Earlier, you learned about parentheses as a way to disambiguate complex expressions.
Parentheses also create a *numbered* capturing group (number 1, 2 etc.).
A capturing group stores *the part of the string* matched by the part of the regular expression inside the parentheses.
You can refer to the same text as previously matched by a capturing group with *backreferences*, like `\1`, `\2` etc.
For example, the following regular expression finds all fruits that have a repeated pair of letters.
```{r}
str_view(fruit, "(..)\\1", match = TRUE)
```
(Shortly, you'll also see how they're useful in conjunction with `str_match()`.)
### Exercises
1. Describe, in words, what these expressions will match:
a. `(.)\1\1`
b. `"(.)(.)\\2\\1"`
c. `(..)\1`
d. `"(.).\\1.\\1"`
e. `"(.)(.)(.).*\\3\\2\\1"`
2. Construct regular expressions to match words that:
a. Start and end with the same character.
b. Contain a repeated pair of letters (e.g. "church" contains "ch" repeated twice.)
c. Contain one letter repeated in at least three places (e.g. "eleven" contains three "e"s.)
## Other uses of regular expressions
There are two useful function in base R that also use regular expressions:
- `apropos()` searches all objects available from the global environment.
This is useful if you can't quite remember the name of the function.
```{r}
apropos("replace")
```
- `dir()` lists all the files in a directory.
The `pattern` argument takes a regular expression and only returns file names that match the pattern.
For example, you can find all the R Markdown files in the current directory with:
```{r}
head(dir(pattern = "\\.Rmd$"))
```
(If you're more comfortable with "globs" like `*.Rmd`, you can convert them to regular expressions with `glob2rx()`):
## A caution
A word of caution before we continue: because regular expressions are so powerful, it's easy to try and solve every problem with a single regular expression.
In the words of Jamie Zawinski:
> Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems.
As a cautionary tale, check out this regular expression that checks if a email address is valid:
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:
\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)
?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)
?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t]
)*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*
)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)
*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r
\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t
]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(
?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t
])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?
:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)
?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)
?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:
\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])
*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\
.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(
?:\r\n)?[ \t])*))*)?;\s*)
This is a somewhat pathological example (because email addresses are actually surprisingly complex), but is used in real code.
See the Stack Overflow discussion at <http://stackoverflow.com/a/201378> for more details.
Don't forget that you're in a programming language and you have other tools at your disposal.
Instead of creating one complex regular expression, it's often easier to write a series of simpler regexps.
If you get stuck trying to create a single regexp that solves your problem, take a step back and think if you could break the problem down into smaller pieces, solving each challenge before moving onto the next one.

View File

@ -214,259 +214,6 @@ TODO: add connection to `arrange()`
6. Write a function that turns (e.g.) a vector `c("a", "b", "c")` into the string `a, b, and c`.
Think carefully about what it should do if given a vector of length 0, 1, or 2.
## Matching patterns with regular expressions
Regexps are a very terse language that allow you to describe patterns in strings.
They take a little while to get your head around, but once you understand them, you'll find them extremely useful.
To learn regular expressions, we'll use `str_view()` and `str_view_all()`.
These functions take a character vector and a regular expression, and show you how they match.
We'll start with very simple regular expressions and then gradually get more and more complicated.
Once you've mastered pattern matching, you'll learn how to apply those ideas with various stringr functions.
### Basic matches
The simplest patterns match exact strings:
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "an")
```
The next step up in complexity is `.`, which matches any character (except a newline):
```{r}
str_view(x, ".a.")
```
But if "`.`" matches any character, how do you match the character "`.`"?
You need to use an "escape" to tell the regular expression you want to match it exactly, not use its special behaviour.
Like strings, regexps use the backslash, `\`, to escape special behaviour.
So to match an `.`, you need the regexp `\.`.
Unfortunately this creates a problem.
We use strings to represent regular expressions, and `\` is also used as an escape symbol in strings.
So to create the regular expression `\.` we need the string `"\\."`.
```{r}
# To create the regular expression, we need \\
dot <- "\\."
# But the expression itself only contains one:
writeLines(dot)
# And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")
```
If `\` is used as an escape character in regular expressions, how do you match a literal `\`?
Well you need to escape it, creating the regular expression `\\`.
To create that regular expression, you need to use a string, which also needs to escape `\`.
That means to match a literal `\` you need to write `"\\\\"` --- you need four backslashes to match one!
```{r}
x <- "a\\b"
writeLines(x)
str_view(x, "\\\\")
```
In this book, I'll write regular expression as `\.` and strings that represent the regular expression as `"\\."`.
#### Exercises
1. Explain why each of these strings don't match a `\`: `"\"`, `"\\"`, `"\\\"`.
2. How would you match the sequence `"'\`?
3. What patterns will the regular expression `\..\..\..` match?
How would you represent it as a string?
### Anchors
By default, regular expressions will match any part of a string.
It's often useful to *anchor* the regular expression so that it matches from the start or end of the string.
You can use:
- `^` to match the start of the string.
- `$` to match the end of the string.
```{r}
x <- c("apple", "banana", "pear")
str_view(x, "^a")
str_view(x, "a$")
```
To remember which is which, try this mnemonic which I learned from [Evan Misshula](https://twitter.com/emisshula/status/323863393167613953): if you begin with power (`^`), you end up with money (`$`).
To force a regular expression to only match a complete string, anchor it with both `^` and `$`:
```{r}
x <- c("apple pie", "apple", "apple cake")
str_view(x, "apple")
str_view(x, "^apple$")
```
You can also match the boundary between words with `\b`.
I don't often use this in R, but I will sometimes use it when I'm doing a search in RStudio when I want to find the name of a function that's a component of other functions.
For example, I'll search for `\bsum\b` to avoid matching `summarise`, `summary`, `rowsum` and so on.
#### Exercises
1. How would you match the literal string `"$^$"`?
2. Given the corpus of common words in `stringr::words`, create regular expressions that find all words that:
a. Start with "y".
b. End with "x"
c. Are exactly three letters long. (Don't cheat by using `str_length()`!)
d. Have seven letters or more.
Since this list is long, you might want to use the `match` argument to `str_view()` to show only the matching or non-matching words.
### Character classes and alternatives
There are a number of special patterns that match more than one character.
You've already seen `.`, which matches any character apart from a newline.
There are four other useful tools:
- `\d`: matches any digit.
- `\s`: matches any whitespace (e.g. space, tab, newline).
- `[abc]`: matches a, b, or c.
- `[^abc]`: matches anything except a, b, or c.
Remember, to create a regular expression containing `\d` or `\s`, you'll need to escape the `\` for the string, so you'll type `"\\d"` or `"\\s"`.
A character class containing a single character is a nice alternative to backslash escapes when you want to include a single metacharacter in a regex.
Many people find this more readable.
```{r}
# Look for a literal character that normally has special meaning in a regex
str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")
str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")
str_view(c("abc", "a.c", "a*c", "a c"), "a[ ]")
```
This works for most (but not all) regex metacharacters: `$` `.` `|` `?` `*` `+` `(` `)` `[` `{`.
Unfortunately, a few characters have special meaning even inside a character class and must be handled with backslash escapes: `]` `\` `^` and `-`.
You can use *alternation* to pick between one or more alternative patterns.
For example, `abc|d..f` will match either '"abc"', or `"deaf"`.
Note that the precedence for `|` is low, so that `abc|xyz` matches `abc` or `xyz` not `abcyz` or `abxyz`.
Like with mathematical expressions, if precedence ever gets confusing, use parentheses to make it clear what you want:
```{r}
str_view(c("grey", "gray"), "gr(e|a)y")
```
#### Exercises
1. Create regular expressions to find all words that:
a. Start with a vowel.
b. That only contain consonants. (Hint: thinking about matching "not"-vowels.)
c. End with `ed`, but not with `eed`.
d. End with `ing` or `ise`.
2. Empirically verify the rule "i before e except after c".
3. Is "q" always followed by a "u"?
4. Write a regular expression that matches a word if it's probably written in British English, not American English.
5. Create a regular expression that will match telephone numbers as commonly written in your country.
### Repetition / Quantifiers
The next step up in power involves controlling how many times a pattern matches:
- `?`: 0 or 1
- `+`: 1 or more
- `*`: 0 or more
```{r}
x <- "1888 is the longest year in Roman numerals: MDCCCLXXXVIII"
str_view(x, "CC?")
str_view(x, "CC+")
str_view(x, 'C[LX]+')
```
Note that the precedence of these operators is high, so you can write: `colou?r` to match either American or British spellings.
That means most uses will need parentheses, like `bana(na)+`.
You can also specify the number of matches precisely:
- `{n}`: exactly n
- `{n,}`: n or more
- `{1,m}`: at most m
- `{n,m}`: between n and m
```{r}
str_view(x, "C{2}")
str_view(x, "C{2,}")
str_view(x, "C{1,3}")
str_view(x, "C{2,3}")
```
By default these matches are "greedy": they will match the longest string possible.
You can make them "lazy", matching the shortest string possible by putting a `?` after them.
This is an advanced feature of regular expressions, but it's useful to know that it exists:
```{r}
str_view(x, 'C{2,3}?')
str_view(x, 'C[LX]+?')
```
Collectively, these operators are called **quantifiers** because they quantify how many times a match can occur.
#### Exercises
1. Describe the equivalents of `?`, `+`, `*` in `{m,n}` form.
2. Describe in words what these regular expressions match: (read carefully to see if I'm using a regular expression or a string that defines a regular expression.)
a. `^.*$`
b. `"\\{.+\\}"`
c. `\d{4}-\d{2}-\d{2}`
d. `"\\\\{4}"`
3. Create regular expressions to find all words that:
a. Start with three consonants.
b. Have three or more vowels in a row.
c. Have two or more vowel-consonant pairs in a row.
4. Solve the beginner regexp crosswords at <https://regexcrossword.com/challenges/beginner>.
### Grouping and backreferences
Earlier, you learned about parentheses as a way to disambiguate complex expressions.
Parentheses also create a *numbered* capturing group (number 1, 2 etc.).
A capturing group stores *the part of the string* matched by the part of the regular expression inside the parentheses.
You can refer to the same text as previously matched by a capturing group with *backreferences*, like `\1`, `\2` etc.
For example, the following regular expression finds all fruits that have a repeated pair of letters.
```{r}
str_view(fruit, "(..)\\1", match = TRUE)
```
(Shortly, you'll also see how they're useful in conjunction with `str_match()`.)
#### Exercises
1. Describe, in words, what these expressions will match:
a. `(.)\1\1`
b. `"(.)(.)\\2\\1"`
c. `(..)\1`
d. `"(.).\\1.\\1"`
e. `"(.)(.)(.).*\\3\\2\\1"`
2. Construct regular expressions to match words that:
a. Start and end with the same character.
b. Contain a repeated pair of letters (e.g. "church" contains "ch" repeated twice.)
c. Contain one letter repeated in at least three places (e.g. "eleven" contains three "e"s.)
## Tools
Now that you've learned the basics of regular expressions, it's time to learn how to apply them to real problems.
@ -478,103 +225,6 @@ In this section you'll learn a wide array of stringr functions that let you:
- Replace matches with new values.
- Split a string based on a match.
A word of caution before we continue: because regular expressions are so powerful, it's easy to try and solve every problem with a single regular expression.
In the words of Jamie Zawinski:
> Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems.
As a cautionary tale, check out this regular expression that checks if a email address is valid:
(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:
\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)
?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)
?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t]
)*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*
)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)
*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r
\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t
]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[ \t]))*"(?:(?:\r\n)?[ \t])*)*:(?:(?:\r\n)?[ \t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)?[ \t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*))*@(?:(?:\r\n)?[ \t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(?:\r\n)?[ \t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(
?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t
])*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?
:\.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)*\<(?:(?:\r\n)
?[ \t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)
?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\.(?:(?:\r\n)?[ \t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*)*:(?:(?:\r\n)?[ \t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])*)(?:\.(?:(?:
\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[ \t]))*"(?:(?:\r\n)?[ \t])
*))*@(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*)(?:\
.(?:(?:\r\n)?[ \t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[ \t])*))*\>(?:(
?:\r\n)?[ \t])*))*)?;\s*)
This is a somewhat pathological example (because email addresses are actually surprisingly complex), but is used in real code.
See the Stack Overflow discussion at <http://stackoverflow.com/a/201378> for more details.
Don't forget that you're in a programming language and you have other tools at your disposal.
Instead of creating one complex regular expression, it's often easier to write a series of simpler regexps.
If you get stuck trying to create a single regexp that solves your problem, take a step back and think if you could break the problem down into smaller pieces, solving each challenge before moving onto the next one.
### Detect matches
To determine if a character vector matches a pattern, use `str_detect()`.
@ -872,6 +522,37 @@ str_split(x, " ")[[1]]
str_split(x, boundary("word"))[[1]]
```
### Separate
`separate()` pulls apart one column into multiple columns, by splitting wherever a separator character appears.
Take `table3`:
```{r}
table3
```
The `rate` column contains both `cases` and `population` variables, and we need to split it into two variables.
`separate()` takes the name of the column to separate, and the names of the columns to separate into, as shown in Figure \@ref(fig:tidy-separate) and the code below.
```{r}
table3 %>%
separate(rate, into = c("cases", "population"))
```
```{r tidy-separate, echo = FALSE, out.width = "75%", fig.cap = "Separating `rate` into `cases` and `population` to make `table3` tidy", fig.alt = "Two panels, one with a data frame with three columns (country, year, and rate) and the other with a data frame with four columns (country, year, cases, and population). Arrows show how the rate variable is separated into two variables: cases and population."}
knitr::include_graphics("images/tidy-17.png")
```
By default, `separate()` will split values wherever it sees a non-alphanumeric character (i.e. a character that isn't a number or letter).
For example, in the code above, `separate()` split the values of `rate` at the forward slash characters.
If you wish to use a specific character to separate a column, you can pass the character to the `sep` argument of `separate()`.
For example, we could rewrite the code above as:
```{r eval = FALSE}
table3 %>%
separate(rate, into = c("cases", "population"), sep = "/")
```
#### Exercises
1. Split up a string like `"apples, pears, and bananas"` into individual components.
@ -1009,27 +690,6 @@ There are three other functions you can use instead of `regex()`:
2. What are the five most common words in `sentences`?
## Other uses of regular expressions
There are two useful function in base R that also use regular expressions:
- `apropos()` searches all objects available from the global environment.
This is useful if you can't quite remember the name of the function.
```{r}
apropos("replace")
```
- `dir()` lists all the files in a directory.
The `pattern` argument takes a regular expression and only returns file names that match the pattern.
For example, you can find all the R Markdown files in the current directory with:
```{r}
head(dir(pattern = "\\.Rmd$"))
```
(If you're more comfortable with "globs" like `*.Rmd`, you can convert them to regular expressions with `glob2rx()`):
## stringi
stringr is built on top of the **stringi** package.
@ -1051,83 +711,6 @@ The main difference is the prefix: `str_` vs. `stri_`.
2. How do you control the language that `stri_sort()` uses for sorting?
## tidyr
So far you've learned how to tidy `table2`, `table4a`, and `table4b`, but not `table3`.
`table3` has a different problem: we have one column (`rate`) that contains two variables (`cases` and `population`).
To fix this problem, we'll need the `separate()` function.
You'll also learn about the complement of `separate()`: `unite()`, which you use if a single variable is spread across multiple columns.
```{r}
library(tidyr)
```
### Separate
`separate()` pulls apart one column into multiple columns, by splitting wherever a separator character appears.
Take `table3`:
```{r}
table3
```
The `rate` column contains both `cases` and `population` variables, and we need to split it into two variables.
`separate()` takes the name of the column to separate, and the names of the columns to separate into, as shown in Figure \@ref(fig:tidy-separate) and the code below.
```{r}
table3 %>%
separate(rate, into = c("cases", "population"))
```
```{r tidy-separate, echo = FALSE, out.width = "75%", fig.cap = "Separating `rate` into `cases` and `population` to make `table3` tidy", fig.alt = "Two panels, one with a data frame with three columns (country, year, and rate) and the other with a data frame with four columns (country, year, cases, and population). Arrows show how the rate variable is separated into two variables: cases and population."}
knitr::include_graphics("images/tidy-17.png")
```
By default, `separate()` will split values wherever it sees a non-alphanumeric character (i.e. a character that isn't a number or letter).
For example, in the code above, `separate()` split the values of `rate` at the forward slash characters.
If you wish to use a specific character to separate a column, you can pass the character to the `sep` argument of `separate()`.
For example, we could rewrite the code above as:
```{r eval = FALSE}
table3 %>%
separate(rate, into = c("cases", "population"), sep = "/")
```
(Formally, `sep` is a regular expression, which you'll learn more about in Chapter \@ref(strings).)
Look carefully at the column types: you'll notice that `cases` and `population` are character columns.
This is the default behaviour in `separate()`: it leaves the type of the column as is.
Here, however, it's not very useful as those really are numbers.
We can ask `separate()` to try and convert to better types using `convert = TRUE`:
```{r}
table3 %>%
separate(rate, into = c("cases", "population"), convert = TRUE)
```
### Unite
`unite()` is the inverse of `separate()`: it combines multiple columns into a single column.
You'll need it much less frequently than `separate()`, but it's still a useful tool to have in your back pocket.
We can use `unite()` to rejoin the `cases` and `population` columns that we created in the last example.
That data is saved as `tidyr::table1`.
`unite()` takes a data frame, the name of the new variable to create, and a set of columns to combine, again specified in `dplyr::select()` style:
```{r}
table1 %>%
unite(rate, cases, population)
```
In this case we also need to use the `sep` argument.
The default will place an underscore (`_`) between the values from different columns.
Here we want `"/"` instead:
```{r}
table1 %>%
unite(rate, cases, population, sep = "/")
```
### Exercises
1. What do the `extra` and `fill` arguments do in `separate()`?
@ -1177,5 +760,3 @@ table1 %>%
)
baker
```
##