Typically adding "R" to a query is enough to restrict it to relevant results: if the search isn't useful, it often means that there aren't any R-specific results available.
Additionally, adding package names like "tidyverse" or "ggplot2" will help narrow down the results to code that will feel more familiar to you as well, e.g., "how to make a boxplot in R" vs. "how to make a boxplot in R with ggplot2".
If you get an error message and you have no idea what it means, try googling it!
Chances are that someone else has been confused by it in the past, and there will be help somewhere on the web.
(If the error message isn't in English, run `Sys.setenv(LANGUAGE = "en")` and re-run the code; you're more likely to find help for English error messages.)
This text is formatted in a special way, called Markdown, which can be pasted to sites like StackOverflow or Github and they will automatically render it to look like code.
Here's what that Markdown would look like rendered on GitHub:
1. **Packages** should be loaded at the top of the script so it's easy to see which ones the example needs.
This is a good time to check that you're using the latest version of each package; you may have discovered a bug that's been fixed since you installed or last updated the package.
Creating reprexes is not trivial, and it will take some practice to learn to create good, truly minimal reprexes.
However, learning to ask questions that include the code, and investing the time to make it reproducible will continue to pay off as you learn and master R.
One way is to follow what the tidyverse team is doing on the [tidyverse blog](https://www.tidyverse.org/blog/).
To keep up with the R community more broadly, we recommend reading [R Weekly](https://rweekly.org): it's a community effort to aggregate the most interesting news in the R community each week.
The next part of the book, Visualize, does a deeper dive into the grammar of graphics and creating data visualizations with ggplot2, showcases how to use the tools you've learned so far to conduct exploratory data analysis, and introduces good practices for creating plots for communication.