In this chapter we will explore model visualisation from two different sides:
1. Use a model to make it easier to see important patterns in our data.
1. Use visualisation to understand what a model is telling us about our data.
We're going to give you a basic strategy, and point you to places to learn more. The key is to think about data generated from your model as regular data - you're going to want to manipulate it and visualise it in many different ways.
Being good at modelling is a mixture of having some good general principles and having a big toolbox of techniques. Here we'll focus on general techniques to help you undertand what your model is telling you.
Focus on constructing models that help you better understand the data. This will generally lead to models that predict better. But you have to beware of overfitting the data - in the next section we'll discuss some formal methods. But a healthy dose of scepticism is also a powerful: do you believe that a pattern you see in your sample is going to generalise to a wider population?
Transition from implicit knowledge in your head and in data to explicit knowledge in the model. In other words, you want to make explicit your knowledge of the data and capture it explicitly in a model. This makes it easier to apply to new domains, and easier for others to use. But you must always remember that your knowledge is incomplete.
For very large and complex datasets this is going to be a lot of work. There are certainly alternative approaches - a more machine learning approach is simply to focus on improving the predictive ability of the model, being careful to fairly assess it (i.e. not assessing the model on the data that was used to train it). These approaches tend to produce black boxes - i.e. the model does a really good job, but you don't know why. This is fine, but the main problem is that you can't apply your real world knowledge to the model to think about whether or not it's likely to work in the long-term, as fundamentals change. For most real models, I'd expect you to use some combination of this approach and a ML model building approach. If prediction is important, get to a good point, and then use visulisation to understand the most important parts of the model.
To do this we're going to use some helper functions from the modelr package. This package provides some wrappers around the traditional base R modelling functions that make them easier to use in data manipulation pipelines. Currently at <https://github.com/hadley/modelr> but will need to be on CRAN before the book is published.
There are fewer flights on weekends because a very large proportion of travel is for business. You might sometimes have to less on Sunday for an early flight, but it's very rare that you'd leave on Saturday: you'd much rather be home with your family.
One way to remove this strong pattern is to fit a model that "explains" (i.e. attempts to predict) the day of week effect, and then look at the residuals:
Note the change in the y-axis: now we are seeing the deviation from the expected number of flights, given the day of week. This plot is interesting because now that we've removed much of the large day-of-week effect, we can see some of the subtler patterns that remain:
1. Our day of week adjustment seems to fail starting around June: you can
still see a strong regular pattern that our model hasn't removed. Drawing
a plot with one line for each day of the week makes the cause easier
So it looks like summer holidays are from early June to late August. That seems to line up fairly well with the [state's school terms](http://schools.nyc.gov/Calendar/2013-2014+School+Year+Calendars.htm): summer break is Jun 26 - Sep 9. So lets add a "term" variable to attemp to control for that. I manually tweaked the dates to get nice breaks in the plot.
It looks like there is significant variation across the terms, so fitting a separate day of week effect for each term is reasonable. This improves our model, but not as much as we might hope:
That's because this model is basically calculating an average for each combination of wday and school term. We have a lot of big outliers, so they tend to drag the mean far away from the typical value.
We can reduce this problem by switch to a robust model fitted by `MASS::rlm()`. A robust model is a variation of the linear model which you can think of a fitting medians, instead of means (it's a bit more complicated than that, but that's a reasonable intuition). This greatly reduces the impact of the outliers on our estimates, and gives a result that does a good job of removing the day of week pattern:
Focus on predictions from a model because this works for any type of model. Visualising parameters can also be useful, but tends to be most useful when you have many similar models. Visualising predictions works regardless of the model family.
```{r}
```
Visualising high-dimensional models is challenging. You'll need to partition off a useable slice at a time.