Our goal in this part of the book is to give you a rapid overview of the main tools of data science: **importing**, **tidying**, **transforming**, and **visualizing data**, as shown in @fig-ds-whole-game.
- Visualisation is a great place to start with R programming, because the payoff is so clear: you get to make elegant and informative plots that help you understand data.
In @sec-data-visualization you'll dive into visualization, learning the basic structure of a ggplot2 plot, and powerful techniques for turning data into plots.
- Visualisation alone is typically not enough, so in @sec-data-transform, you'll learn the key verbs that allow you to select important variables, filter out key observations, create new variables, and compute summaries.
- In @sec-data-tidy, you'll learn about tidy data, a consistent way of storing your data that makes transformation, visualization, and modelling easier.
In @sec-workflow-basics, @sec-workflow-pipes, @sec-workflow-style, and @sec-workflow-scripts-projects you'll learn good workflow practices for writing and organizing your R code.