r4ds/oreilly/strings.html

745 lines
44 KiB
HTML
Raw Normal View History

<section data-type="chapter" id="chp-strings">
2022-11-19 01:55:22 +08:00
<h1><span id="sec-strings" class="quarto-section-identifier d-none d-lg-block"><span class="chapter-title">Strings</span></span></h1>
<section id="introduction" data-type="sect1">
<h1>
Introduction</h1>
<p>So far, youve used a bunch of strings without learning much about the details. Now its time to dive into them, learning what makes strings tick, and mastering some of the powerful string manipulation tool you have at your disposal.</p>
<p>Well begin with the details of creating strings and character vectors. Youll then dive into creating strings from data, then the opposite; extracting strings from data. Well then discuss tools that work with individual letters. The chapter finishes off with functions that work with individual letters and a brief discussion of where your expectations from English might steer you wrong when working with other languages.</p>
<p>Well keep working with strings in the next chapter, where youll learn more about the power of regular expressions.</p>
<section id="prerequisites" data-type="sect2">
<h2>
Prerequisites</h2>
<div data-type="important"><div class="callout-body d-flex">
<div class="callout-icon-container">
<i class="callout-icon"/>
</div>
</div>
<p>This chapter relies on features only found in stringr 1.5.0 and tidyr 1.3.0 which are still in development. If you want to live life on the edge you can get the dev versions with <code>devtools::install_github(c("tidyverse/stringr", "tidyverse/tidyr"))</code>.</p></div>
<p>In this chapter, well use functions from the stringr package which is part of the core tidyverse. Well also use the babynames data since it provides some fun strings to manipulate.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">library(tidyverse)
library(babynames)</pre>
</div>
<p>You can easily tell when youre using a stringr function because all stringr functions start with <code>str_</code>. This is particularly useful if you use RStudio, because typing <code>str_</code> will trigger autocomplete, allowing you jog your memory of which functions are available.</p>
<div class="cell">
<div class="cell-output-display">
<p><img src="screenshots/stringr-autocomplete.png" class="img-fluid" width="678"/></p>
</div>
</div>
</section>
</section>
<section id="creating-a-string" data-type="sect1">
<h1>
Creating a string</h1>
2022-11-19 00:30:32 +08:00
<p>Weve created strings in passing earlier in the book, but didnt discuss the details. Firstly, you can create a string using either single quotes (<code>'</code>) or double quotes (<code>"</code>). Theres no difference in behavior between the two so in the interests of consistency the <a href="https://style.tidyverse.org/syntax.html#character-vectors">tidyverse style guide</a> recommends using <code>"</code>, unless the string contains multiple <code>"</code>.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">string1 &lt;- "This is a string"
string2 &lt;- 'If I want to include a "quote" inside a string, I use single quotes'</pre>
</div>
<p>If you forget to close a quote, youll see <code>+</code>, the continuation character:</p>
<pre><code>&gt; "This is a string without a closing quote
+
+
+ HELP I'M STUCK IN A STRING</code></pre>
<p>If this happens to you and you cant figure out which quote you need to close, press Escape to cancel, and try again.</p>
<section id="escapes" data-type="sect2">
<h2>
Escapes</h2>
<p>To include a literal single or double quote in a string you can use <code>\</code> to “escape” it:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">double_quote &lt;- "\"" # or '"'
single_quote &lt;- '\'' # or "'"</pre>
</div>
<p>So if you want to include a literal backslash in your string, youll need to escape it: <code>"\\"</code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">backslash &lt;- "\\"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Beware that the printed representation of a string is not the same as string itself, because the printed representation shows the escapes (in other words, when you print a string, you can copy and paste the output to recreate that string). To see the raw contents of the string, use <code><a href="https://stringr.tidyverse.org/reference/str_view.html">str_view()</a></code><span data-type="footnote">Or use the base R function <code><a href="https://rdrr.io/r/base/writeLines.html">writeLines()</a></code>.</span>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x &lt;- c(single_quote, double_quote, backslash)
x
#&gt; [1] "'" "\"" "\\"
str_view(x)
#&gt; [1] │ '
#&gt; [2] │ "
#&gt; [3] │ \</pre>
</div>
</section>
<section id="sec-raw-strings" data-type="sect2">
<h2>
Raw strings</h2>
<p>Creating a string with multiple quotes or backslashes gets confusing quickly. To illustrate the problem, lets create a string that contains the contents of the code block where we define the <code>double_quote</code> and <code>single_quote</code> variables:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">tricky &lt;- "double_quote &lt;- \"\\\"\" # or '\"'
single_quote &lt;- '\\'' # or \"'\""
str_view(tricky)
#&gt; [1] │ double_quote &lt;- "\"" # or '"'
#&gt; │ single_quote &lt;- '\'' # or "'"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Thats a lot of backslashes! (This is sometimes called <a href="https://en.wikipedia.org/wiki/Leaning_toothpick_syndrome">leaning toothpick syndrome</a>.) To eliminate the escaping you can instead use a <strong>raw string</strong><span data-type="footnote">Available in R 4.0.0 and above.</span>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">tricky &lt;- r"(double_quote &lt;- "\"" # or '"'
single_quote &lt;- '\'' # or "'")"
str_view(tricky)
#&gt; [1] │ double_quote &lt;- "\"" # or '"'
#&gt; │ single_quote &lt;- '\'' # or "'"</pre>
</div>
<p>A raw string usually starts with <code>r"(</code> and finishes with <code>)"</code>. But if your string contains <code>)"</code> you can instead use <code>r"[]"</code> or <code>r"{}"</code>, and if thats still not enough, you can insert any number of dashes to make the opening and closing pairs unique, e.g. <code>`r"--()--"</code>, <code>`r"---()---"</code>, etc. Raw strings are flexible enough to handle any text.</p>
</section>
<section id="other-special-characters" data-type="sect2">
<h2>
Other special characters</h2>
2022-11-19 00:30:32 +08:00
<p>As well as <code>\"</code>, <code>\'</code>, and <code>\\</code> there are a handful of other special characters that may come in handy. The most common are <code>\n</code>, newline, and <code>\t</code>, tab. Youll also sometimes see strings containing Unicode escapes that start with <code>\u</code> or <code>\U</code>. This is a way of writing non-English characters that works on all systems. You can see the complete list of other special characters in <code><a href="https://rdrr.io/r/base/Quotes.html">?'"'</a></code>.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x &lt;- c("one\ntwo", "one\ttwo", "\u00b5", "\U0001f604")
x
#&gt; [1] "one\ntwo" "one\ttwo" "µ" "😄"
str_view(x)
#&gt; [1] │ one
#&gt; │ two
#&gt; [2] │ one{\t}two
#&gt; [3] │ µ
#&gt; [4] │ 😄</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Note that <code><a href="https://stringr.tidyverse.org/reference/str_view.html">str_view()</a></code> uses a blue background for tabs to make them easier to spot. One of the challenges of working with text is that theres a variety of ways that white space can end up in text, so this background helps you recognize that something strange is going on.</p>
</section>
<section id="exercises" data-type="sect2">
<h2>
Exercises</h2>
<ol type="1"><li>
<p>Create strings that contain the following values:</p>
<ol type="1"><li><p><code>He said "That's amazing!"</code></p></li>
<li><p><code>\a\b\c\d</code></p></li>
<li><p><code>\\\\\\</code></p></li>
</ol></li>
<li>
2022-11-19 00:30:32 +08:00
<p>Create the string in your R session and print it. What happens to the special “\u00a0”? How does <code><a href="https://stringr.tidyverse.org/reference/str_view.html">str_view()</a></code> display it? Can you do a little googling to figure out what this special character is?</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x &lt;- "This\u00a0is\u00a0tricky"</pre>
</div>
</li>
</ol></section>
</section>
<section id="creating-many-strings-from-data" data-type="sect1">
<h1>
Creating many strings from data</h1>
2022-11-19 00:30:32 +08:00
<p>Now that youve learned the basics of creating a string or two by “hand”, well go into the details of creating strings from other strings. This will help you solve the common problem where you have some text that you wrote that you want to combine with strings from a data frame. For example, to create a greeting you might combine “Hello” with a <code>name</code> variable. Well show you how to do this with <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> and <code><a href="https://stringr.tidyverse.org/reference/str_glue.html">str_glue()</a></code> and how you can you use them with <code><a href="https://dplyr.tidyverse.org/reference/mutate.html">mutate()</a></code>. That naturally raises the question of what string functions you might use with <code><a href="https://dplyr.tidyverse.org/reference/summarise.html">summarise()</a></code>, so well finish this section with a discussion of <code><a href="https://stringr.tidyverse.org/reference/str_flatten.html">str_flatten()</a></code> which is a summary function for strings.</p>
<section id="str_c" data-type="sect2">
<h2>
<code>str_c()</code>
</h2>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code><span data-type="footnote"><code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> is very similar to the base <code><a href="https://rdrr.io/r/base/paste.html">paste0()</a></code>. There are two main reasons we recommend it: it propagates <code>NA</code>s (rather than converting them to <code>"NA"</code>) and it uses the tidyverse recycling rules.</span> takes any number of vectors as arguments and returns a character vector:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_c("x", "y")
#&gt; [1] "xy"
str_c("x", "y", "z")
#&gt; [1] "xyz"
str_c("Hello ", c("John", "Susan"))
#&gt; [1] "Hello John" "Hello Susan"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> is designed to be used with <code><a href="https://dplyr.tidyverse.org/reference/mutate.html">mutate()</a></code> so it obeys the usual rules for recycling and missing values:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">set.seed(1410)
df &lt;- tibble(name = c(wakefield::name(3), NA))
df |&gt; mutate(greeting = str_c("Hi ", name, "!"))
#&gt; # A tibble: 4 × 2
#&gt; name greeting
#&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 Ilena Hi Ilena!
#&gt; 2 Sacramento Hi Sacramento!
#&gt; 3 Graylon Hi Graylon!
#&gt; 4 &lt;NA&gt; &lt;NA&gt;</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>If you want missing values to display in some other way, use <code><a href="https://dplyr.tidyverse.org/reference/coalesce.html">coalesce()</a></code>. Depending on what you want, you might use it either inside or outside of <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df |&gt;
mutate(
greeting1 = str_c("Hi ", coalesce(name, "you"), "!"),
greeting2 = coalesce(str_c("Hi ", name, "!"), "Hi!")
)
#&gt; # A tibble: 4 × 3
#&gt; name greeting1 greeting2
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 Ilena Hi Ilena! Hi Ilena!
#&gt; 2 Sacramento Hi Sacramento! Hi Sacramento!
#&gt; 3 Graylon Hi Graylon! Hi Graylon!
#&gt; 4 &lt;NA&gt; Hi you! Hi!</pre>
</div>
</section>
<section id="sec-glue" data-type="sect2">
<h2>
<code>str_glue()</code>
</h2>
2022-11-19 00:30:32 +08:00
<p>If you are mixing many fixed and variable strings with <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code>, youll notice that you type a lot of <code>"</code>s, making it hard to see the overall goal of the code. An alternative approach is provided by the <a href="https://glue.tidyverse.org">glue package</a> via <code><a href="https://stringr.tidyverse.org/reference/str_glue.html">str_glue()</a></code><span data-type="footnote">If youre not using stringr, you can also access it directly with <code><a href="https://glue.tidyverse.org/reference/glue.html">glue::glue()</a></code>.</span>. You give it a single string that has a special feature: anything inside <code><a href="https://rdrr.io/r/base/Paren.html">{}</a></code> will be evaluated like its outside of the quotes:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df |&gt; mutate(greeting = str_glue("Hi {name}!"))
#&gt; # A tibble: 4 × 2
#&gt; name greeting
#&gt; &lt;chr&gt; &lt;glue&gt;
#&gt; 1 Ilena Hi Ilena!
#&gt; 2 Sacramento Hi Sacramento!
#&gt; 3 Graylon Hi Graylon!
#&gt; 4 &lt;NA&gt; Hi NA!</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>As you can see, <code><a href="https://stringr.tidyverse.org/reference/str_glue.html">str_glue()</a></code> currently converts missing values to the string <code>"NA"</code> unfortunately making it inconsistent with <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code>.</p>
<p>You also might wonder what happens if you need to include a regular <code>{</code> or <code>}</code> in your string. If you guess that youll need to somehow escape it, youre on the right track. The trick is that glue uses a slightly different escaping technique; instead of prefixing with special character like <code>\</code>, you double up the special characters:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df |&gt; mutate(greeting = str_glue("{{Hi {name}!}}"))
#&gt; # A tibble: 4 × 2
#&gt; name greeting
#&gt; &lt;chr&gt; &lt;glue&gt;
#&gt; 1 Ilena {Hi Ilena!}
#&gt; 2 Sacramento {Hi Sacramento!}
#&gt; 3 Graylon {Hi Graylon!}
#&gt; 4 &lt;NA&gt; {Hi NA!}</pre>
</div>
</section>
<section id="str_flatten" data-type="sect2">
<h2>
<code>str_flatten()</code>
</h2>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> and <code>glue()</code> work well with <code><a href="https://dplyr.tidyverse.org/reference/mutate.html">mutate()</a></code> because their output is the same length as their inputs. What if you want a function that works well with <code><a href="https://dplyr.tidyverse.org/reference/summarise.html">summarise()</a></code>, i.e. something that always returns a single string? Thats the job of <code><a href="https://stringr.tidyverse.org/reference/str_flatten.html">str_flatten()</a></code><span data-type="footnote">The base R equivalent is <code><a href="https://rdrr.io/r/base/paste.html">paste()</a></code> used with the <code>collapse</code> argument.</span>: it takes a character vector and combines each element of the vector into a single string:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_flatten(c("x", "y", "z"))
#&gt; [1] "xyz"
str_flatten(c("x", "y", "z"), ", ")
#&gt; [1] "x, y, z"
str_flatten(c("x", "y", "z"), ", ", last = ", and ")
#&gt; [1] "x, y, and z"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>This makes it work well with <code><a href="https://dplyr.tidyverse.org/reference/summarise.html">summarise()</a></code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df &lt;- tribble(
~ name, ~ fruit,
"Carmen", "banana",
"Carmen", "apple",
"Marvin", "nectarine",
"Terence", "cantaloupe",
"Terence", "papaya",
"Terence", "madarine"
)
df |&gt;
group_by(name) |&gt;
summarise(fruits = str_flatten(fruit, ", "))
#&gt; # A tibble: 3 × 2
#&gt; name fruits
#&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 Carmen banana, apple
#&gt; 2 Marvin nectarine
#&gt; 3 Terence cantaloupe, papaya, madarine</pre>
</div>
</section>
<section id="exercises-1" data-type="sect2">
<h2>
Exercises</h2>
<ol type="1"><li>
2022-11-19 00:30:32 +08:00
<p>Compare and contrast the results of <code><a href="https://rdrr.io/r/base/paste.html">paste0()</a></code> with <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> for the following inputs:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_c("hi ", NA)
str_c(letters[1:2], letters[1:3])</pre>
</div>
</li>
<li>
2022-11-19 00:30:32 +08:00
<p>Convert the following expressions from <code><a href="https://stringr.tidyverse.org/reference/str_c.html">str_c()</a></code> to <code><a href="https://stringr.tidyverse.org/reference/str_glue.html">str_glue()</a></code> or vice versa:</p>
<ol type="a"><li><p><code>str_c("The price of ", food, " is ", price)</code></p></li>
<li><p><code>str_glue("I'm {age} years old and live in {country}")</code></p></li>
<li><p><code>str_c("\\section{", title, "}")</code></p></li>
</ol></li>
</ol></section>
</section>
<section id="extracting-data-from-strings" data-type="sect1">
<h1>
Extracting data from strings</h1>
<p>Its very common for multiple variables to be crammed together into a single string. In this section youll learn how to use four tidyr functions to extract them:</p>
<ul><li><code>df |&gt; separate_longer_delim(col, delim)</code></li>
<li><code>df |&gt; separate_longer_position(col, width)</code></li>
<li><code>df |&gt; separate_wider_delim(col, delim, names)</code></li>
<li><code>df |&gt; separate_wider_position(col, widths)</code></li>
</ul><p>If you look closely you can see theres a common pattern here: <code>separate_</code>, then <code>longer</code> or <code>wider</code>, then <code>_</code>, then by <code>delim</code> or <code>position</code>. Thats because these four functions are composed from two simpler primitives:</p>
<ul><li>
<code>longer</code> makes input data frame longer, creating new rows; <code>wider</code> makes the input data frame wider, generating new columns.</li>
<li>
<code>delim</code> splits up a string with a delimiter like <code>", "</code> or <code>" "</code>; <code>position</code> splits at specified widths, like <code>c(3, 5, 2)</code>.</li>
</ul><p>Well come back the last member of this family, <code>separate_regex_wider()</code>, in <a href="#chp-regexps" data-type="xref">#chp-regexps</a>. Its the most flexible of the <code>wider</code> functions but you need to know something about regular expression before you can use it.</p>
<p>The next two sections will give you the basic idea behind these separate functions, first separating into rows (which is a little simpler) and then separating in to columns. Well finish off my discussing the tools that the <code>wider</code> functions give you to diagnose problems.</p>
<section id="separating-into-rows" data-type="sect2">
<h2>
Separating into rows</h2>
2022-11-19 00:30:32 +08:00
<p>Separating a string into rows tends to be most useful when the number of components varies from row to row. The most common case is requiring <code><a href="https://tidyr.tidyverse.org/reference/separate_longer_delim.html">separate_longer_delim()</a></code> to split based on a delimiter:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df1 &lt;- tibble(x = c("a,b,c", "d,e", "f"))
df1 |&gt;
separate_longer_delim(x, delim = ",")
#&gt; # A tibble: 6 × 1
#&gt; x
#&gt; &lt;chr&gt;
#&gt; 1 a
#&gt; 2 b
#&gt; 3 c
#&gt; 4 d
#&gt; 5 e
#&gt; 6 f</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Its rarer to see <code><a href="https://tidyr.tidyverse.org/reference/separate_longer_delim.html">separate_longer_position()</a></code> in the wild, but some older datasets do use very compact format where each character is used to record a value:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df2 &lt;- tibble(x = c("1211", "131", "21"))
df2 |&gt;
separate_longer_position(x, width = 1)
#&gt; # A tibble: 9 × 1
#&gt; x
#&gt; &lt;chr&gt;
#&gt; 1 1
#&gt; 2 2
#&gt; 3 1
#&gt; 4 1
#&gt; 5 1
#&gt; 6 3
#&gt; # … with 3 more rows</pre>
</div>
</section>
<section id="sec-string-columns" data-type="sect2">
<h2>
Separating into columns</h2>
2022-11-19 00:30:32 +08:00
<p>Separating a string into columns tends to be most useful when there are a fixed number of components in each string, and you want to spread them into columns. They are slightly more complicated than their <code>longer</code> equivalents because you need to name the columns. For example, in this following dataset <code>x</code> is made up of a code, an edition number, and a year, separated by <code>"."</code>. To use <code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_delim()</a></code> we supply the delimiter and the names in two arguments:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df3 &lt;- tibble(x = c("a10.1.2022", "b10.2.2011", "e15.1.2015"))
df3 |&gt;
separate_wider_delim(
x,
delim = ".",
names = c("code", "edition", "year")
)
#&gt; # A tibble: 3 × 3
#&gt; code edition year
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 a10 1 2022
#&gt; 2 b10 2 2011
#&gt; 3 e15 1 2015</pre>
</div>
<p>If a specific piece is not useful you can use an <code>NA</code> name to omit it from the results:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df3 |&gt;
separate_wider_delim(
x,
delim = ".",
names = c("code", NA, "year")
)
#&gt; # A tibble: 3 × 2
#&gt; code year
#&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 a10 2022
#&gt; 2 b10 2011
#&gt; 3 e15 2015</pre>
</div>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_position()</a></code> works a little differently, because you typically want to specify the width of each column. So you give it a named integer vector, where the name gives the name of the new column and the value is the number of characters it occupies. You can omit values from the output by not naming them:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df4 &lt;- tibble(x = c("202215TX", "202122LA", "202325CA"))
df4 |&gt;
separate_wider_position(
x,
widths = c(year = 4, age = 2, state = 2)
)
#&gt; # A tibble: 3 × 3
#&gt; year age state
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 2022 15 TX
#&gt; 2 2021 22 LA
#&gt; 3 2023 25 CA</pre>
</div>
</section>
<section id="diagnosing-widening-problems" data-type="sect2">
<h2>
Diagnosing widening problems</h2>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_delim()</a></code><span data-type="footnote">The same principles apply to <code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_position()</a></code> and <code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_regex()</a></code>.</span> requires a fixed and known set of columns. What happens if some of the rows dont have the expected number of pieces? There are two possible problems, too few or too many pieces, so <code><a href="https://tidyr.tidyverse.org/reference/separate_wider_delim.html">separate_wider_delim()</a></code> provides two arguments to help: <code>too_few</code> and <code>too_many</code>. Lets first look at the <code>too_few</code> case with the following sample dataset:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df &lt;- tibble(x = c("1-1-1", "1-1-2", "1-3", "1-3-2", "1"))
df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z")
)
#&gt; Error in `separate_wider_delim()`:
#&gt; ! Expected 3 pieces in each element of `x`.
#&gt; ! 2 values were too short.
#&gt; Use `too_few = "debug"` to diagnose the problem.
#&gt; Use `too_few = "align_start"/"align_end"` to silence this message.</pre>
</div>
<p>Youll notice that we get an error, but the error gives us some suggestions as to how you might proceed. Lets start by debugging the problem:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">debug &lt;- df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z"),
too_few = "debug"
)
#&gt; Warning: Debug mode activated: adding variables `x_ok`, `x_pieces`, and
#&gt; `x_remainder`.
debug
#&gt; # A tibble: 5 × 6
#&gt; x y z x_ok x_pieces x_remainder
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;lgl&gt; &lt;int&gt; &lt;chr&gt;
#&gt; 1 1-1-1 1 1 TRUE 3 ""
#&gt; 2 1-1-2 1 2 TRUE 3 ""
#&gt; 3 1-3 3 &lt;NA&gt; FALSE 2 ""
#&gt; 4 1-3-2 3 2 TRUE 3 ""
#&gt; 5 1 &lt;NA&gt; &lt;NA&gt; FALSE 1 ""</pre>
</div>
<p>When you use the debug mode you get three extra columns add to the output: <code>x_ok</code>, <code>x_pieces</code>, and <code>x_remainder</code> (if you separate variable with a different name, youll get a different prefix). Here, <code>x_ok</code> lets you quickly find the inputs that failed:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">debug |&gt; filter(!x_ok)
#&gt; # A tibble: 2 × 6
#&gt; x y z x_ok x_pieces x_remainder
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;lgl&gt; &lt;int&gt; &lt;chr&gt;
#&gt; 1 1-3 3 &lt;NA&gt; FALSE 2 ""
#&gt; 2 1 &lt;NA&gt; &lt;NA&gt; FALSE 1 ""</pre>
</div>
<p><code>x_pieces</code> tells us how many pieces were found, compared to the expected 3 (the length of <code>names</code>). <code>x_remainder</code> isnt useful when there are too few pieces, but well see it again shortly.</p>
<p>Sometimes looking at this debugging information will reveal a problem with your delimiter strategy or suggest that you need to do more preprocessing before separating. In that case, fix the problem upstream and make sure to remove <code>too_few = "debug"</code> to ensure that new problem become errors.</p>
<p>In other cases you may just want to fill in the missing pieces with <code>NA</code>s and move on. Thats the job of <code>too_few = "align_start"</code> and <code>too_few = "align_end"</code> which allow you to control where the <code>NA</code>s should go:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z"),
too_few = "align_start"
)
#&gt; # A tibble: 5 × 3
#&gt; x y z
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 1 1 1
#&gt; 2 1 1 2
#&gt; 3 1 3 &lt;NA&gt;
#&gt; 4 1 3 2
#&gt; 5 1 &lt;NA&gt; &lt;NA&gt;</pre>
</div>
<p>The same principles apply if you have too many pieces:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df &lt;- tibble(x = c("1-1-1", "1-1-2", "1-3-5-6", "1-3-2", "1-3-5-7-9"))
df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z")
)
#&gt; Error in `separate_wider_delim()`:
#&gt; ! Expected 3 pieces in each element of `x`.
#&gt; ! 2 values were too long.
#&gt; Use `too_many = "debug"` to diagnose the problem.
#&gt; Use `too_many = "drop"/"merge"` to silence this message.</pre>
</div>
<p>But now when we debug the result, you can see the purpose of <code>x_remainder</code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">debug &lt;- df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z"),
too_many = "debug"
)
#&gt; Warning: Debug mode activated: adding variables `x_ok`, `x_pieces`, and
#&gt; `x_remainder`.
debug |&gt; filter(!x_ok)
#&gt; # A tibble: 2 × 6
#&gt; x y z x_ok x_pieces x_remainder
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;lgl&gt; &lt;int&gt; &lt;chr&gt;
#&gt; 1 1-3-5-6 3 5 FALSE 4 -6
#&gt; 2 1-3-5-7-9 3 5 FALSE 5 -7-9</pre>
</div>
<p>You have a slightly different set of options for handling too many pieces: you can either silently “drop” any additional pieces or “merge” them all into the final column:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z"),
too_many = "drop"
)
#&gt; # A tibble: 5 × 3
#&gt; x y z
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 1 1 1
#&gt; 2 1 1 2
#&gt; 3 1 3 5
#&gt; 4 1 3 2
#&gt; 5 1 3 5
df |&gt;
separate_wider_delim(
x,
delim = "-",
names = c("x", "y", "z"),
too_many = "merge"
)
#&gt; # A tibble: 5 × 3
#&gt; x y z
#&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 1 1 1
#&gt; 2 1 1 2
#&gt; 3 1 3 5-6
#&gt; 4 1 3 2
#&gt; 5 1 3 5-7-9</pre>
</div>
</section>
</section>
<section id="letters" data-type="sect1">
<h1>
Letters</h1>
<p>In this section, well introduce you to functions that allow you to work with the individual letters within a string. Youll learn how to find the length of a string, extract substrings, and handle long strings in plots and tables.</p>
<section id="length" data-type="sect2">
<h2>
Length</h2>
2022-11-19 00:30:32 +08:00
<p><code><a href="https://stringr.tidyverse.org/reference/str_length.html">str_length()</a></code> tells you the number of letters in the string:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_length(c("a", "R for data science", NA))
#&gt; [1] 1 18 NA</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>You could use this with <code><a href="https://dplyr.tidyverse.org/reference/count.html">count()</a></code> to find the distribution of lengths of US babynames, and then with <code><a href="https://dplyr.tidyverse.org/reference/filter.html">filter()</a></code> to look at the longest names<span data-type="footnote">Looking at these entries, wed guess that the babynames data drops spaces or hyphens and truncates after 15 letters.</span>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">babynames |&gt;
count(length = str_length(name), wt = n)
#&gt; # A tibble: 14 × 2
#&gt; length n
#&gt; &lt;int&gt; &lt;int&gt;
#&gt; 1 2 338150
#&gt; 2 3 8589596
#&gt; 3 4 48506739
#&gt; 4 5 87011607
#&gt; 5 6 90749404
#&gt; 6 7 72120767
#&gt; # … with 8 more rows
babynames |&gt;
filter(str_length(name) == 15) |&gt;
count(name, wt = n, sort = TRUE)
#&gt; # A tibble: 34 × 2
#&gt; name n
#&gt; &lt;chr&gt; &lt;int&gt;
#&gt; 1 Franciscojavier 123
#&gt; 2 Christopherjohn 118
#&gt; 3 Johnchristopher 118
#&gt; 4 Christopherjame 108
#&gt; 5 Christophermich 52
#&gt; 6 Ryanchristopher 45
#&gt; # … with 28 more rows</pre>
</div>
</section>
<section id="subsetting" data-type="sect2">
<h2>
Subsetting</h2>
<p>You can extract parts of a string using <code>str_sub(string, start, end)</code>, where <code>start</code> and <code>end</code> are the letters where the substring should start and end. The <code>start</code> and <code>end</code> arguments are inclusive, so the length of the returned string will be <code>end - start + 1</code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x &lt;- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
#&gt; [1] "App" "Ban" "Pea"</pre>
</div>
<p>You can use negative values to count back from the end of the string: -1 is the last character, -2 is the second to last character, etc.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_sub(x, -3, -1)
#&gt; [1] "ple" "ana" "ear"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Note that <code><a href="https://stringr.tidyverse.org/reference/str_sub.html">str_sub()</a></code> wont fail if the string is too short: it will just return as much as possible:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_sub("a", 1, 5)
#&gt; [1] "a"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>We could use <code><a href="https://stringr.tidyverse.org/reference/str_sub.html">str_sub()</a></code> with <code><a href="https://dplyr.tidyverse.org/reference/mutate.html">mutate()</a></code> to find the first and last letter of each name:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">babynames |&gt;
mutate(
first = str_sub(name, 1, 1),
last = str_sub(name, -1, -1)
)
#&gt; # A tibble: 1,924,665 × 7
#&gt; year sex name n prop first last
#&gt; &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; &lt;int&gt; &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt;
#&gt; 1 1880 F Mary 7065 0.0724 M y
#&gt; 2 1880 F Anna 2604 0.0267 A a
#&gt; 3 1880 F Emma 2003 0.0205 E a
#&gt; 4 1880 F Elizabeth 1939 0.0199 E h
#&gt; 5 1880 F Minnie 1746 0.0179 M e
#&gt; 6 1880 F Margaret 1578 0.0162 M t
#&gt; # … with 1,924,659 more rows</pre>
</div>
</section>
<section id="long-strings" data-type="sect2">
<h2>
Long strings</h2>
<p>Sometimes the reason you care about the length of a string is because youre trying to fit it into a label on a plot or in a table. stringr provides two useful tools for cases where your string is too long:</p>
<ul><li><p><code>str_trunc(x, 30)</code> ensures that no string is longer than 30 characters, replacing any letters after 30 with <code></code>.</p></li>
<li><p><code>str_wrap(x, 30)</code> wraps a string introducing new lines so that each line is at most 30 characters (it doesnt hyphenate, however, so any word longer than 30 characters will make a longer line)</p></li>
</ul><p>The following code shows these functions in action with a made up string:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x &lt;- "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."
str_view(str_trunc(x, 30))
#&gt; [1] │ Lorem ipsum dolor sit amet,...
str_view(str_wrap(x, 30))
#&gt; [1] │ Lorem ipsum dolor sit amet,
#&gt; │ consectetur adipiscing
#&gt; │ elit, sed do eiusmod tempor
#&gt; │ incididunt ut labore et dolore
#&gt; │ magna aliqua. Ut enim ad
#&gt; │ minim veniam, quis nostrud
#&gt; │ exercitation ullamco laboris
#&gt; │ nisi ut aliquip ex ea commodo
#&gt; │ consequat.</pre>
</div>
</section>
<section id="exercises-2" data-type="sect2">
<h2>
Exercises</h2>
2022-11-19 00:30:32 +08:00
<ol type="1"><li>Use <code><a href="https://stringr.tidyverse.org/reference/str_length.html">str_length()</a></code> and <code><a href="https://stringr.tidyverse.org/reference/str_sub.html">str_sub()</a></code> to extract the middle letter from each baby name. What will you do if the string has an even number of characters?</li>
<li>Are there any major trends in the length of babynames over time? What about the popularity of first and last letters?</li>
</ol></section>
</section>
<section id="sec-other-languages" data-type="sect1">
<h1>
Non-English text</h1>
<p>So far, weve focused on English language text which is particularly easy to work with for two reasons. Firstly, the English alphabet is fairly simple: there are just 26 letters. Secondly (and maybe more importantly), the computing infrastructure we use today was predominantly designed by English speakers. Unfortunately we dont have room for a full treatment of non-English languages, but I wanted to draw your attention to some of the biggest challenges you might encounter: encoding, letter variations, and locale dependent functions.</p>
<section id="encoding" data-type="sect2">
<h2>
Encoding</h2>
2022-11-19 00:30:32 +08:00
<p>When working with non-English text the first challenge is often the <strong>encoding</strong>. To understand whats going on, we need to dive into the details of how computers represent strings. In R, we can get at the underlying representation of a string using <code><a href="https://rdrr.io/r/base/rawConversion.html">charToRaw()</a></code>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">charToRaw("Hadley")
#&gt; [1] 48 61 64 6c 65 79</pre>
</div>
<p>Each of these six hexadecimal numbers represents one letter: <code>48</code> is H, <code>61</code> is a, and so on. The mapping from hexadecimal number to character is called the encoding, and in this case the encoding is called ASCII. ASCII does a great job of representing English characters, because its the <strong>American</strong> Standard Code for Information Interchange.</p>
<p>Things arent so easy for languages other than English. In the early days of computing there were many competing standards for encoding non-English characters. For example, there were two different encodings for Europe: Latin1 (aka ISO-8859-1) was used for Western European languages and Latin2 (aka ISO-8859-2) was used for Central European languages. In Latin1, the byte <code>b1</code> is “±”, but in Latin2, its “ą”! Fortunately, today there is one standard that is supported almost everywhere: UTF-8. UTF-8 can encode just about every character used by humans today, as well as many extra symbols like emojis.</p>
<p>readr uses UTF-8 everywhere. This is a good default but will fail for data produced by older systems that dont use UTF-8. If this happens to you, your strings will look weird when you print them. Sometimes just one or two characters might be messed up; other times youll get complete gibberish. For example here are two inline CSVs with unusual encodings<span data-type="footnote">Here Im using the special <code>\x</code> to encode binary data directly into a string.</span>:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">x1 &lt;- "text\nEl Ni\xf1o was particularly bad this year"
read_csv(x1)
#&gt; # A tibble: 1 × 1
#&gt; text
#&gt; &lt;chr&gt;
#&gt; 1 "El Ni\xf1o was particularly bad this year"
x2 &lt;- "text\n\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"
read_csv(x2)
#&gt; # A tibble: 1 × 1
#&gt; text
#&gt; &lt;chr&gt;
#&gt; 1 "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"</pre>
</div>
<p>To read these correctly you specify the encoding via the <code>locale</code> argument:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">read_csv(x1, locale = locale(encoding = "Latin1"))
#&gt; # A tibble: 1 × 1
#&gt; text
#&gt; &lt;chr&gt;
#&gt; 1 El Niño was particularly bad this year
read_csv(x2, locale = locale(encoding = "Shift-JIS"))
#&gt; # A tibble: 1 × 1
#&gt; text
#&gt; &lt;chr&gt;
#&gt; 1 こんにちは</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>How do you find the correct encoding? If youre lucky, itll be included somewhere in the data documentation. Unfortunately, thats rarely the case, so readr provides <code><a href="https://readr.tidyverse.org/reference/encoding.html">guess_encoding()</a></code> to help you figure it out. Its not foolproof, and it works better when you have lots of text (unlike here), but its a reasonable place to start. Expect to try a few different encodings before you find the right one.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">guess_encoding(x1)
#&gt; # A tibble: 1 × 2
#&gt; encoding confidence
#&gt; &lt;chr&gt; &lt;dbl&gt;
#&gt; 1 ISO-8859-1 0.41
guess_encoding(x2)
#&gt; # A tibble: 1 × 2
#&gt; encoding confidence
#&gt; &lt;chr&gt; &lt;dbl&gt;
#&gt; 1 KOI8-R 0.27</pre>
</div>
<p>Encodings are a rich and complex topic, and weve only scratched the surface here. If youd like to learn more we recommend reading the detailed explanation at <a href="http://kunststube.net/encoding/" class="uri">http://kunststube.net/encoding/</a>.</p>
</section>
<section id="letter-variations" data-type="sect2">
<h2>
Letter variations</h2>
2022-11-19 00:30:32 +08:00
<p>If youre working with individual letters (e.g. with <code><a href="https://stringr.tidyverse.org/reference/str_length.html">str_length()</a></code> and <code><a href="https://stringr.tidyverse.org/reference/str_sub.html">str_sub()</a></code>) theres an important challenge if youre working with an language that has accents because letters might be represented as an individual character or by combing an unaccented letter (e.g. ü) with a diacritic mark (e.g. ¨). For example, this code shows two ways of representing ü that look identical:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">u &lt;- c("\u00fc", "u\u0308")
str_view(u)
#&gt; [1] │ ü
#&gt; [2] │ ü</pre>
</div>
<p>But they have different lengths and the first characters are different:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_length(u)
#&gt; [1] 1 2
str_sub(u, 1, 1)
#&gt; [1] "ü" "u"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>Finally note that these strings look differently when you compare them with <code>==</code>, for which is stringr provides the handy <code><a href="https://stringr.tidyverse.org/reference/str_equal.html">str_equal()</a></code> function:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">u[[1]] == u[[2]]
#&gt; [1] FALSE
str_equal(u[[1]], u[[2]])
#&gt; [1] TRUE</pre>
</div>
</section>
<section id="locale-dependent-function" data-type="sect2">
<h2>
Locale-dependent function</h2>
2022-11-19 00:30:32 +08:00
<p>Finally, there are a handful of stringr functions whose behavior depends on your <strong>locale</strong>. A locale is similar to a language, but includes an optional region specifier to handle regional variations within a language. A locale is specified by lower-case language abbreviation, optionally followed by a <code>_</code> and a upper-case region identifier. For example, “en” is English, “en_GB” is British English, and “en_US” is American English. If you dont already know the code for your language, <a href="https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes">Wikipedia</a> has a good list, and you can see which are supported in stringr by looking at <code><a href="https://rdrr.io/pkg/stringi/man/stri_locale_list.html">stringi::stri_locale_list()</a></code>.</p>
<p>Base R string functions automatically use the locale set by your operating system. This means that base R string functions do what you expect for your language, but your code might work differently if you share it with someone who lives in different country. To avoid this problem, stringr defaults to using English rules, by using the “en” locale, and requires you to specify the <code>locale</code> argument to override it. Fortunately there are two sets of functions where the locale really matters: changing case and sorting.</p>
<p><strong>T</strong>he rules for changing case are not the same in every language. For example, Turkish has two is: with and without a dot, and it capitalizes them in a different way to English:</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_to_upper(c("i", "ı"))
#&gt; [1] "I" "I"
str_to_upper(c("i", "ı"), locale = "tr")
#&gt; [1] "İ" "I"</pre>
</div>
<p>Sorting strings depends on the order of the alphabet, and order of the alphabet is not the same in every language<span data-type="footnote">Sorting in languages that dont have an alphabet, like Chinese, is more complicated still.</span>! Heres an example: in Czech, “ch” is a compound letter that appears after <code>h</code> in the alphabet.</p>
<div class="cell">
2022-11-19 01:26:25 +08:00
<pre data-type="programlisting" data-code-language="r">str_sort(c("a", "c", "ch", "h", "z"))
#&gt; [1] "a" "c" "ch" "h" "z"
str_sort(c("a", "c", "ch", "h", "z"), locale = "cs")
#&gt; [1] "a" "c" "h" "ch" "z"</pre>
</div>
2022-11-19 00:30:32 +08:00
<p>This also comes up when sorting strings with <code><a href="https://dplyr.tidyverse.org/reference/arrange.html">dplyr::arrange()</a></code> which is why it also has a <code>locale</code> argument.</p>
</section>
</section>
<section id="summary" data-type="sect1">
<h1>
Summary</h1>
<p>In this chapter youve learned about some of the power of the stringr package: you learned how to create, combine, and extract strings, and about some of the challenges you might face with non-English strings. Now its time to learn one of the most important and powerful tools for working withr strings: regular expressions. Regular expressions are very concise, but very expressive, language for describing patterns within strings, and are the topic of the next chapter.</p>
</section>
</section>